TABLE 23 Solid state structural transformations induced by high pressure [226]

Compound	C.N.	Symmetry ^a ambient pressure	Structural transformation with pressure	Transformation press. (kbar)	Spectroscopic probe	Remarks
$Ni(Bz\phi_2P)_2Cl_2$	4	Pure T _d	No change		Electronic FIR	
$Ni(Bz\phi_2P)_2Br_2$ b	4	1/3 Planar (Square) 2/3 T _d	Planar (square)	20	Electronic FIR	Reversible
$Ni(Qnqn)Cl_2$	4	Distorted T _d	Binuclear, SQP [Ni(Qnqn)Cl ₂] ₂	2	Electronic FIR	Irreversible
CuCl ₄ ^{2- c}	4	Flattened T _d	Planar (square)	20	FIR	Reversible
Ni(CN) ₅ ^{3- d}	5	SQP + TBP	SQP	7	IR in $4 \mu m$	Reversible
$[NiLX]^{\dagger}$, $NiLX_2$, $[NiL_2X]^{\dagger}$ NiL_3X_2	5	SQP + TBP	TBP	Onset of press.	Electronic	Reversible

^a Local symmetry around central metal atom considered. ^b Ni(Bz ϕ_2 P)₂I₂ inferred to be similar Ni(Bz ϕ_2 P)₂Br₂ from magnetic moment. ^c Cation is (CH₃)₂CHNH₃ or Cs⁺. ^d Cation is Cr(en)₃³⁺; compound is [Cr(en)₃Ni(CN)₅] 1.5 H₂O.

Abbreviations: Bz = benzyl; ϕ = phenyl; Qnqn = trans-2-(2'-quinolyl)methylene-3-quinuclidione; L = organic ligand; X = halogen or pseudo halogen; T_d = tetrahedral; SQP = square pyramidal; TBP = trigonal bipyramid.

TABLE 24
Behavior classes for pressure-induced solid-state changes [226] ^a

Behavior class	Structural change		Electronic change		Examples	Ref.
	Geo- metric change	C.N. change	Spin- state change	Oxida- tion state change		
1 2A	No	No	No	No	Green Ni(BzPh ₂ P) ₂ Cl ₂	213
					[Ni(Qnqn(Cl ₂] ₂	227
	Yes	No	No	No	Co(Qnqn)Cl ₂	225
					FeS ₂	228
					Several CuCl ₄ ²⁻	229,
					3-	230
					Ni(CN) ₅	231
2B	Yes	Yes	No	No	Ni(Qnqn)Cl ₂ ,	
					$Co(py)_2Cl_2$	204,
00	Yes	No	Yes	No	C	441
2C	res	No	res	NO	Green	019
2.4	No	No	Yes	No	$Ni(BzPh_2)_2Br_2$	213 232
3A ***	No	NO	res	NO	Mn(Fe)S ₂	216
					$Fe(phen)_2(N_3)_2$	
					$Fe(phen)_2(NCS)_2$	215,
						216, 233
3B	No	No	No	Yes	Fe(acac) ₃	234
эв	NO	NO	NO	res	Cu(OXin) ₂	235
					Hemin	27
4	Yes		Yes	Santa	Co(NO)(Ph ₂ CH ₃ P) ₂ Cl ₂	

^a A modified version of that in ref. 226 appears above. Abbreviations: C.N. = coordination number; Bz = benzyl; Qnqn = trans-2-(2'-quinolyl)methylene-3-quinuclidione; py = pyridine; ArgH = $(H_2N)_2CNH(CH_2)_3CHNH_2COO^-$; aca = acetylacetonate; OXin = 8-hydroxyquinoline.

Both the electronic and IR absorption spectra of the two paramagnetic green isomers were studied as a function of pressure [213]. The green Ni(BzPh₂P)₂Cl₂ isomer retains its tetrahedral coordination geometry at all pressures and shows no indication of any conversion to a square-planar geometry at high pressure. However, the green Ni(BzPh₂P)₂Br₂ isomer is transformed from the above-mentioned mixture of tetrahedral and square-planar coordination geometries at ambient pressure, to the purely square-planar red isomer at high pressure [213]. This reversible pressure-induced structural transformation is essentially complete at ca. 20 kbar and represents class 2C behavior. In this instance, the change in the spin state of the nickel ion occurs as a result of the geometric structural change and not directly as a consequence of the high pressure.