TABLE 23 Solid state structural transformations induced by high pressure [226] | Compound | C.N. | Symmetry ^a ambient pressure | Structural
transformation
with pressure | Transformation press. (kbar) | Spectroscopic probe | Remarks | |---|------|--|--|------------------------------|---------------------|--------------| | $Ni(Bz\phi_2P)_2Cl_2$ | 4 | Pure T _d | No change | | Electronic
FIR | | | $Ni(Bz\phi_2P)_2Br_2$ b | 4 | 1/3 Planar
(Square)
2/3 T _d | Planar (square) | 20 | Electronic
FIR | Reversible | | $Ni(Qnqn)Cl_2$ | 4 | Distorted T _d | Binuclear, SQP [Ni(Qnqn)Cl ₂] ₂ | 2 | Electronic
FIR | Irreversible | | CuCl ₄ ^{2- c} | 4 | Flattened T _d | Planar (square) | 20 | FIR | Reversible | | Ni(CN) ₅ ^{3- d} | 5 | SQP + TBP | SQP | 7 | IR in $4 \mu m$ | Reversible | | $[NiLX]^{\dagger}$, $NiLX_2$,
$[NiL_2X]^{\dagger}$
NiL_3X_2 | 5 | SQP + TBP | TBP | Onset of press. | Electronic | Reversible | ^a Local symmetry around central metal atom considered. ^b Ni(Bz ϕ_2 P)₂I₂ inferred to be similar Ni(Bz ϕ_2 P)₂Br₂ from magnetic moment. ^c Cation is (CH₃)₂CHNH₃ or Cs⁺. ^d Cation is Cr(en)₃³⁺; compound is [Cr(en)₃Ni(CN)₅] 1.5 H₂O. Abbreviations: Bz = benzyl; ϕ = phenyl; Qnqn = trans-2-(2'-quinolyl)methylene-3-quinuclidione; L = organic ligand; X = halogen or pseudo halogen; T_d = tetrahedral; SQP = square pyramidal; TBP = trigonal bipyramid. TABLE 24 Behavior classes for pressure-induced solid-state changes [226] ^a | Behavior
class | Structural change | | Electronic change | | Examples | Ref. | |-------------------|--------------------------|----------------|--------------------------|-----------------------------------|--|-------------| | | Geo-
metric
change | C.N.
change | Spin-
state
change | Oxida-
tion
state
change | | | | 1
2A | No | No | No | No | Green
Ni(BzPh ₂ P) ₂ Cl ₂ | 213 | | | | | | | [Ni(Qnqn(Cl ₂] ₂ | 227 | | | Yes | No | No | No | Co(Qnqn)Cl ₂ | 225 | | | | | | | FeS ₂ | 228 | | | | | | | Several CuCl ₄ ²⁻ | 229, | | | | | | | 3- | 230 | | | | | | | Ni(CN) ₅ | 231 | | 2B | Yes | Yes | No | No | Ni(Qnqn)Cl ₂ , | | | | | | | | $Co(py)_2Cl_2$ | 204, | | 00 | Yes | No | Yes | No | C | 441 | | 2C | res | No | res | NO | Green | 019 | | 2.4 | No | No | Yes | No | $Ni(BzPh_2)_2Br_2$ | 213
232 | | 3A *** | No | NO | res | NO | Mn(Fe)S ₂ | 216 | | | | | | | $Fe(phen)_2(N_3)_2$ | | | | | | | | $Fe(phen)_2(NCS)_2$ | 215, | | | | | | | | 216,
233 | | 3B | No | No | No | Yes | Fe(acac) ₃ | 234 | | эв | NO | NO | NO | res | Cu(OXin) ₂ | 235 | | | | | | | Hemin | 27 | | 4 | Yes | | Yes | Santa | Co(NO)(Ph ₂ CH ₃ P) ₂ Cl ₂ | | ^a A modified version of that in ref. 226 appears above. Abbreviations: C.N. = coordination number; Bz = benzyl; Qnqn = trans-2-(2'-quinolyl)methylene-3-quinuclidione; py = pyridine; ArgH = $(H_2N)_2CNH(CH_2)_3CHNH_2COO^-$; aca = acetylacetonate; OXin = 8-hydroxyquinoline. Both the electronic and IR absorption spectra of the two paramagnetic green isomers were studied as a function of pressure [213]. The green Ni(BzPh₂P)₂Cl₂ isomer retains its tetrahedral coordination geometry at all pressures and shows no indication of any conversion to a square-planar geometry at high pressure. However, the green Ni(BzPh₂P)₂Br₂ isomer is transformed from the above-mentioned mixture of tetrahedral and square-planar coordination geometries at ambient pressure, to the purely square-planar red isomer at high pressure [213]. This reversible pressure-induced structural transformation is essentially complete at ca. 20 kbar and represents class 2C behavior. In this instance, the change in the spin state of the nickel ion occurs as a result of the geometric structural change and not directly as a consequence of the high pressure.